DC-DC converters can be found in almost any modern electronics. The applications of DC-DC converters range from smartphones and laptops to industrial and military systems. From this article, you can learn about their common types, their advantages and drawbacks, how they work, where and why they are used, and what issues one can face when designing electronics with DC-DC power converters.
What are DC-DC converters and their functions?
DC-to-DC converters are electromechanical devices or electronic circuits that convert one direct current voltage or current level to another. In most cases, devices use only one power source. However, if different sub-circuits require different voltages to work properly, one needs to convert the input voltage to a lower or higher level. That can be done with DC-DC converters. Additionally, they stabilize voltages, not letting them drop or rise too much. For example, one of the purposes of car DC-DC converters is to regulate the voltage fluctuations in automotive alternators.
These circuits help distribute and manage power properly to provide each power consumer with appropriate voltage or current level. It also protects highly-sensitive sub-circuits. On top of that, in portable devices, they can raise voltage when the batteries are partially lowered, making power consumption more efficient. Such converters are used in many electronic devices. According to EMR’s Global DC-DC Converter Market report, more than half of them are used in smartphones, but they have other applications as well: from consumer electronics and telecommunication equipment to industrial and medical equipment, factory automation, transportation, robotics, power electronics, etc. As an electronics developer, we also make full use of various DC-to-DC converters when designing power electronics, hardware, and robotics.